有一个长度为m的隐藏数组b。b的每个元素值都不知道。
我们利用b数组的生成了n个数组$c_1, c_2, \cdots , c_n$,其中一个数组$c_k$的生成方式不一样
数组$c_t, 1\le t\le n$生成的过程如下:
首先让$c_t = b$。然后对其操作至少一次。
对于$t \ne k$,我们每次操作可以选择$2\le i < j \le m-1$,让$c_{t,i}$和$c_{t,j}$减少1,让$c_{t,i-1}$和$c_{t,j+1}$增加1。记为操作1。
对于$t = k$,我们每次操作可以选择$2\le i < j \le m-2$,让$c_{t,i}$和$c_{t,j}$减少1,让$c_{t,i-1}$和$c_{t,j+2}$增加1。记为操作2。
求k,以及对$c_k$操作了多少次。
$3 \leq n \leq 10^5, 7 \leq m \leq 3 \cdot 10^5$
">
Magical Array Created by LXC on Tue Aug 1 20:23:54 2023
https://codeforces.com/problemset/problem/1704/D
ranting: 1900
tag: constructive algorithms, hashing, implementation, math
problem 有一个长度为m的隐藏数组b。b的每个元素值都不知道。
我们利用b数组的生成了n个数组$c_1, c_2, \cdots , c_n$,其中一个数组$c_k$的生成方式不一样
数组$c_t, 1\le t\le n$生成的过程如下:
首先让$c_t = b$。然后对其操作至少一次。
对于$t \ne k$,我们每次操作可以选择$2\le i < j \le m-1$,让$c_{t,i}$和$c_{t,j}$减少1,让$c_{t,i-1}$和$c_{t,j+1}$增加1。记为操作1。
对于$t = k$,我们每次操作可以选择$2\le i < j \le m-2$,让$c_{t,i}$和$c_{t,j}$减少1,让$c_{t,i-1}$和$c_{t,j+2}$增加1。记为操作2。
求k,以及对$c_k$操作了多少次。
$3 \leq n \leq 10^5, 7 \leq m \leq 3 \cdot 10^5$
solution 定义$f(c_t) = \sum \limits_{i=1}^{n} c_{t, i}\times i$
操作1并不会影响f值,
$a_{i-1} \times (i-1) + a_i \times i + a_j \times j + a_{j+1} \times (j+1) = i \times (a_{i-1}+a_i) + j \times (a_j+a_{j+1}) -a_{i-1} + a_{j+1}$
$(a_{i-1}+1) \times (i-1) + (a_i-1) \times i + (a_j-1) \times j + (a_{j+1}+1) \times (j+1) = i \times (a_{i-1}+a_i) + j \times (a_j+a_{j+1}) -a_{i-1} + a_{j+1}$
而操作2每执行一次会让f增大1。
$a_{i-1} \times (i-1) + a_i \times i + a_j \times j + a_{j+1} \times (j+1) +a_{j+2} \times (j+2) = i \times (a_{i-1}+a_i) + j \times (a_j+a_{j+1}+a_{j+2}) -a_{i-1} + a_{j+1}+2 \times a_{j+2}$
$(a_{i-1}+1) \times (i-1) + (a_i-1) \times i + (a_j-1) \times j + a_{j+1} \times (j+1) + (a_{j+2}+1) \times (j+2) = i \times (a_{i-1}+a_i) + j \times (a_j+a_{j+1}+a_{j+2}) -a_{i-1} + a_{j+1}+ 2 \times a_{j+2} +1$
所以$f(c_k)$不同于其他$f_{c_i}$,容易找到$k$,且操作的次数为$f(c_k)-f(c_i)$
注意$f(c_i)$会溢出,但是$f(c_k)-f(c_i)$却没有溢出。因此即便溢出了得到的答案也是正确的,
或者模一个大数也正确。
code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 #include <bits/stdc++.h> #define ll long long #define ull unsigned long long #define N 500005 #define MOD 998244353 using namespace std;#define mint Modint<MOD> template <const int _MOD>struct Modint { int v; Modint () { v = 0 ; } Modint (long long o) { v = o % _MOD; } int val () { return v; } int pow (long long o) { int ret = 1 , tmp = v; while (o) { if (o & 1 ) ret = ((long long )ret * tmp) % _MOD; o >>= 1 ; tmp = ((long long )tmp * tmp) % _MOD; } return ret; } void operator =(long long o) { v = o % _MOD; } bool operator ==(long long o) const { return v == o; } bool operator ==(Modint o) const { return v == o.v; } bool operator !=(long long o) const { return v != o; } bool operator !=(Modint o) const { return v != o.v; } bool operator <(long long o) const { return v < o; } bool operator <(Modint o) const { return v < o.v; } bool operator >(long long o) const { return v > o; } bool operator >(Modint o) const { return v > o.v; } bool operator <=(long long o) const { return v <= o; } bool operator <=(Modint o) const { return v <= o.v; } bool operator >=(long long o) const { return v >= o; } bool operator >=(Modint o) const { return v >= o.v; } Modint operator +(long long o) const { return *this + Modint (o); } Modint operator +(Modint o) const { return ((long long )v + o.v) % _MOD; } Modint operator *(long long o) const { return *this * Modint (o); } Modint operator *(Modint o) const { return (long long )v * o.v % _MOD; } Modint operator -(long long o) const { return *this - Modint (o); } Modint operator -(Modint o) const { return ((long long )v - o.v + _MOD) % _MOD; } Modint operator /(long long o) const { return *this / Modint (o); } Modint operator /(Modint o) const { return ((long long )v * o.pow (_MOD - 2 )) % _MOD; } void operator +=(long long o) { *this = *this + o; } void operator +=(Modint o) { *this = *this + o; } void operator *=(long long o) { *this = *this * o; } void operator *=(Modint o) { *this = *this * o; } void operator -=(long long o) { *this = *this - o; } void operator -=(Modint o) { *this = *this - o; } void operator /=(long long o) { *this = *this / o; } void operator /=(Modint o) { *this = *this / o; } Modint operator ^(long long o) { return Modint (pow (o)); } Modint operator ^(Modint o) { return Modint (pow (o.v)); } template <class T > friend bool operator ==(T o, Modint u) { return u == o; } template <class T > friend Modint operator +(T o, Modint u) { return u + o; } template <class T > friend Modint operator *(T o, Modint u) { return u * o; } template <class T > friend Modint operator -(T o, Modint u) { return Modint (o) - u; } template <class T > friend Modint operator /(T o, Modint u) { return Modint (o) / u; } void operator ++() { *this = *this + 1 ; } void operator --() { *this = *this - 1 ; } void operator ++(int k) { *this = *this + 1 ; } void operator --(int k) { *this = *this - 1 ; } template <const int T> friend std::istream& operator >>(std::istream& in, Modint<T>& modint) { ll x; in >> x; modint = Modint <T>(x); return in; } template <const int T> friend std::ostream& operator <<(std::ostream& os, const Modint<T>& modint) { os << modint.v; return os; } }; void sol () { int n, m; cin >> n >> m; vector<vector<mint>> c (n, vector <mint>(m, 0 )); vector<mint> h (n) ; for (auto & i : c) { for (auto & j : i) { cin >> j; } } for (int i = 0 ; i < n; i++) { for (int j = 0 ; j < m; j++) { h[i] += j * c[i][j]; } } if (count (h.begin (), h.end (), h[0 ]) == 1 ) { cout << "1 " << h[0 ] - h[1 ] << "\n" ; } else { int p = 0 ; for (int i = 0 ; i < n; i++) { if (h[i] != h[0 ]) p = i; } cout << p + 1 << " " << h[p] - h[0 ] << "\n" ; } } void sol2 () { int n, m; cin >> n >> m; vector<vector<ll>> c (n, vector <ll>(m, 0 )); vector<ll> h (n) ; for (auto & i : c) { for (auto & j : i) { cin >> j; } } for (int i = 0 ; i < n; i++) { for (int j = 0 ; j < m; j++) { h[i] += j * c[i][j]; } } if (count (h.begin (), h.end (), h[0 ]) == 1 ) { cout << "1 " << h[0 ] - h[1 ] << "\n" ; } else { int p = 0 ; for (int i = 0 ; i < n; i++) { if (h[i] != h[0 ]) p = i; } cout << p + 1 << " " << h[p] - h[0 ] << "\n" ; } } int main () { cout << setprecision (15 ) << fixed; ios::sync_with_stdio (false ); cin.tie (0 ); cout.tie (0 ); #ifndef SINGLE_INPUT int t; cin >> t; while (t--) { sol (); } #else sol (); #endif return 0 ; }