Dirty Deeds Done Dirt Cheap

Dirty Deeds Done Dirt Cheap

Created by LXC on Fri Jan 19 20:06:50 2024

https://codeforces.com/problemset/problem/1148/D

ranting: 1800

tag: greedy, sortings

problem

有 $n$ 个整数对 $(a_1, b_1), (a_2, b_2), \cdots, (a_n, b_n)$. 保证 $a_1, b_1, a_2, b_2, \cdots, a_n, b_n$ 两两不相等, 并且均在区间 $[1, 2 \cdot n]$ 内.

好序列的定义:
对于一个序列 $x_1, x_2, \cdots, x_{2k}$, 满足

  • $x_1 < x_2 > x_3 < \cdots < x_{2k - 2} > x_{2k - 1} < x_{2k}$ 或
  • $x_1 > x_2 < x_3 > \cdots > x_{2k - 2} < x_{2k - 1} > x_{2k}$.

求一个序列 $i_1, i_2, \cdots, i_t$ 满足 $a_{i_1}, b_{i_1}, a_{i_2}, b_{i_2}, \cdots, a_{i_t}, b_{i_t}$ 是好序列.

输出 $t$ 的最大值以及对应的序列 $i_1, i_2, \cdots, i_t$.

$2 \leq n \leq 3 \cdot 10^5$
$1 \leq a_i, b_i \leq 2 \cdot n$
并且所有 $a_i, b_i$ 两两不相等.

solution

对于$a_i < b_i$的分成一组,$a_i > b_i$分成一组,答案选择的是数对较多的一组。

对于$a_i < b_i$的一组,我们按照$b_i$降序排列。

这时$a_i< b_i > a_{i+1} < b_{i+1}$。我们只需要对原数对数组的下标进行排序就行了。

对于$a_i > b_i$的一组,同理。

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#include <bits/stdc++.h>
#define SINGLE_INPUT
#define ll long long
#define ull unsigned long long
#define N 500005
#define MOD 998244353
using namespace std;


void sol() {
int n;
cin >> n;
vector<pair<int,int>> a(n);
for (auto& [i,j]:a) {
cin >> i >> j;
}
vector<int> i1, i2;
for (int i=0; i<n; i++) {
if (a[i].first < a[i].second) i1.push_back(i);
else i2.push_back(i);
}
if (i1.size() > i2.size()) {
sort(i1.begin(), i1.end(), [&](int x, int y) {
return a[x].second > a[y].second;
});
cout << i1.size() << "\n";
for (int i:i1) {
cout << i+1 << " ";
} cout << "\n";
} else {
sort(i2.begin(), i2.end(), [&](int x, int y) {
return a[x].first < a[y].first;
});
cout << i2.size() << "\n";
for (int i:i2) {
cout << i+1 << " ";
} cout << "\n";
}
}

int main() {
cout << setprecision(15) << fixed;
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
#ifndef SINGLE_INPUT
int t;
cin >> t;
while (t--) {
sol();
}
#else
sol();
#endif
return 0;
}