The Hat是一个快速解释/猜测单词的游戏(类似于Alias)。在这道题中,我们所讨论的是一种游戏变体,即玩家坐在桌旁,每个人都单独玩游戏。
有 $n$ 个人聚集在一个有 $m$ 张桌子( $n \ge m \times 2$ )的房间里。他们想玩 $k$ 次 The Hat。$k$ 次游戏将在这些桌子上进行,每个人都会玩 $k$ 次游戏。
这些玩家被分配到这些桌子上。每个玩家可以在不同的桌子上玩,但每局游戏每个玩家只能在一张桌子上玩。
玩家们希望拥有“公平”的游戏顺序。出于这个原因,他们正在寻找一个方案,要求如下:
在任意一场游戏中,所有桌子都有 $\lfloor \dfrac{n}{m} \rfloor$ 或 $\lceil \dfrac{n}{m} \rceil$ 个玩家。不同的桌子有不同数量的玩家,这些玩家可以玩不同的游戏。
每个玩家都有一个值 $b_i$,它表示第 $i$ 个玩家和 $\lceil \dfrac{n}{m} \rceil$ 个玩家在一张桌子上玩游戏的次数。任意两个玩家的 $b_i$ 值相差不会超过 $1$。换句话说,对于任意两个玩家 $i,j$,满足 $|b_i-b_j| \leq 1$。
我们称有 $\lfloor \dfrac{n}{m} \rfloor$ 个玩家的桌子为“小桌子”,称有 $\lceil \dfrac{n}{m} \rceil$ 个玩家的桌子为“大桌子”。
例如,$n=5,m=2,k=2$,那么根据第一项要求,每张桌子上应该有 $2$ 或 $3$ 名玩家。考虑这些游戏顺序:
第一局:玩家 $1,2,3$ 在第一张桌子上玩,玩家 $4,5$ 在第二张桌子上玩。第二局:玩家 $5,1$ 在第一张桌子上玩,玩家 $2,3,4$ 在第二张桌子上玩。这个顺序是不“公平”的,因为 $b_2=2$ (第二名玩家在大桌子上玩了两次),$b_5=0$ (第五名玩家没有在大桌子上玩过游戏)。
第一局:玩家 $1,2,3$ 在第一张桌子上玩,玩家 $4,5$ 在第二张桌子上玩。第二局:玩家 $4,5,2$ 在第一张桌子上玩,玩家 $1,3$ 在第二张桌子。这是一种“公平”的顺序:$b=[1,2,1,1,1]$ (任意两个值的差都不超过 $1$)。
为 $n$ 个玩家找到所有“公平”的顺序,如果他们玩 $k$ 次游戏,在 $m$ 张桌子上。
输入格式
第一行一个整数 $t(1 \leq t \leq 10^4)$,表示数据组数。
接下来 $t$ 行,每行三个整数 $n,m,k(2 \leq n \leq 2 \times 10^5,1 \leq m \leq \lfloor \dfrac{n}{2} \rfloor,1 \leq k \leq 10^5)$,分别表示玩家个数,桌子个数以及游戏次数。
保证所有测试用例的 $n \times k$ 之和不超过 $2 \times 10^5$。
输出格式
对于每组数据,输出 $k$ 块矩阵,每块矩阵有 $m$ 行。每一块矩阵表示一次游戏,共有 $m$ 张桌子,用一行表示一张桌子,每行先输出这张桌子的玩家数,再输出这些玩家。每组数据
如果有多个“公平”的顺序,那么输出任意一个。保证至少有一个有效的解。
">Let's Play the Hat?
Let’s Play the Hat?
Created by LXC on Wed Apr 10 18:41:28 2024
https://codeforces.com/problemset/problem/1619/F
ranting: 2000
tag: brute force, constructive algorithms, greedy, math
problem
The Hat是一个快速解释/猜测单词的游戏(类似于Alias)。在这道题中,我们所讨论的是一种游戏变体,即玩家坐在桌旁,每个人都单独玩游戏。
有 $n$ 个人聚集在一个有 $m$ 张桌子( $n \ge m \times 2$ )的房间里。他们想玩 $k$ 次 The Hat。$k$ 次游戏将在这些桌子上进行,每个人都会玩 $k$ 次游戏。
这些玩家被分配到这些桌子上。每个玩家可以在不同的桌子上玩,但每局游戏每个玩家只能在一张桌子上玩。
玩家们希望拥有“公平”的游戏顺序。出于这个原因,他们正在寻找一个方案,要求如下:
- 在任意一场游戏中,所有桌子都有 $\lfloor \dfrac{n}{m} \rfloor$ 或 $\lceil \dfrac{n}{m} \rceil$ 个玩家。不同的桌子有不同数量的玩家,这些玩家可以玩不同的游戏。
- 每个玩家都有一个值 $b_i$,它表示第 $i$ 个玩家和 $\lceil \dfrac{n}{m} \rceil$ 个玩家在一张桌子上玩游戏的次数。任意两个玩家的 $b_i$ 值相差不会超过 $1$。换句话说,对于任意两个玩家 $i,j$,满足 $|b_i-b_j| \leq 1$。
我们称有 $\lfloor \dfrac{n}{m} \rfloor$ 个玩家的桌子为“小桌子”,称有 $\lceil \dfrac{n}{m} \rceil$ 个玩家的桌子为“大桌子”。
例如,$n=5,m=2,k=2$,那么根据第一项要求,每张桌子上应该有 $2$ 或 $3$ 名玩家。考虑这些游戏顺序:
- 第一局:玩家 $1,2,3$ 在第一张桌子上玩,玩家 $4,5$ 在第二张桌子上玩。第二局:玩家 $5,1$ 在第一张桌子上玩,玩家 $2,3,4$ 在第二张桌子上玩。这个顺序是不“公平”的,因为 $b_2=2$ (第二名玩家在大桌子上玩了两次),$b_5=0$ (第五名玩家没有在大桌子上玩过游戏)。
- 第一局:玩家 $1,2,3$ 在第一张桌子上玩,玩家 $4,5$ 在第二张桌子上玩。第二局:玩家 $4,5,2$ 在第一张桌子上玩,玩家 $1,3$ 在第二张桌子。这是一种“公平”的顺序:$b=[1,2,1,1,1]$ (任意两个值的差都不超过 $1$)。
为 $n$ 个玩家找到所有“公平”的顺序,如果他们玩 $k$ 次游戏,在 $m$ 张桌子上。
输入格式
第一行一个整数 $t(1 \leq t \leq 10^4)$,表示数据组数。
接下来 $t$ 行,每行三个整数 $n,m,k(2 \leq n \leq 2 \times 10^5,1 \leq m \leq \lfloor \dfrac{n}{2} \rfloor,1 \leq k \leq 10^5)$,分别表示玩家个数,桌子个数以及游戏次数。
保证所有测试用例的 $n \times k$ 之和不超过 $2 \times 10^5$。
输出格式
对于每组数据,输出 $k$ 块矩阵,每块矩阵有 $m$ 行。每一块矩阵表示一次游戏,共有 $m$ 张桌子,用一行表示一张桌子,每行先输出这张桌子的玩家数,再输出这些玩家。每组数据
如果有多个“公平”的顺序,那么输出任意一个。保证至少有一个有效的解。
solution
有$n \bmod m$个大桌子,大桌子每桌人数为$\lceil \dfrac{n}{m} \rceil$,剩余的都是小桌子,每桌人数为$\lfloor \dfrac{n}{m} \rfloor$。
分配到大桌的人,下一轮要尽量分配到小桌子上去。
大桌总人数为有$(n \bmod m)\lceil \dfrac{n}{m} \rceil$,我们可以在其中轮转地选取$n - (n \bmod m)\lceil \dfrac{n}{m} \rceil$分配到小桌子上。
code
1 |
|